Convergence in formal topology: a unifying notion
نویسندگان
چکیده
Several variations on the definition of a Formal Topology exist in the literature. They differ on how they express convergence, the formal property corresponding to the fact that open subsets are closed under finite intersections. We introduce a general notion of convergence of which any previous definition is a special case. This leads to a predicative presentation and inductive generation of locales (formal covers), commutative quantales (convergent covers) and suplattices (basic covers) in a uniform way. Thanks to our abstract treatment of convergence, we are able to specify categorically the precise sense according to which our inductively generated structures are free, thus refining Johnstone’s coverage theorem. We also obtain a natural and predicative version of a fundamental result by Joyal and Tierney: convergent covers (commutative quantales) correspond to commutative co-semigroups over the category of basic covers (suplattices). 2010 Mathematics Subject Classification 54A05, 03F65 (primary); 06D22, 06F07, 06B23, 18B35 (secondary)
منابع مشابه
THE CATEGORY OF T-CONVERGENCE SPACES AND ITS CARTESIAN-CLOSEDNESS
In this paper, we define a kind of lattice-valued convergence spaces based on the notion of $top$-filters, namely $top$-convergence spaces, and show the category of $top$-convergence spaces is Cartesian-closed. Further, in the lattice valued context of a complete $MV$-algebra, a close relation between the category of$top$-convergence spaces and that of strong $L$-topological spaces is establish...
متن کاملSome results about unbounded convergences in Banach lattices
Suppose E is a Banach lattice. A net in E is said to be unbounded absolute weak convergent ( uaw-convergent, for short) to provided that the net convergences to zero, weakly. In this note, we further investigate unbounded absolute weak convergence in E. We show that this convergence is stable under passing to and from ideals and sublattices. Compatible with un-convergenc, we show that ...
متن کاملQuantale-valued fuzzy Scott topology
The aim of this paper is to extend the truth value table oflattice-valued convergence spaces to a more general case andthen to use it to introduce and study the quantale-valued fuzzy Scotttopology in fuzzy domain theory. Let $(L,*,varepsilon)$ be acommutative unital quantale and let $otimes$ be a binary operationon $L$ which is distributive over nonempty subsets. The quadruple$(L,*,otimes,varep...
متن کاملPOINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS
We study the space of all continuous fuzzy-valued functions from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$ endowed with the pointwise convergence topology. Our results generalize the classical ones for continuous real-valued functions. The field of applications of this approach seems to be large, since the classical case allows many known devices to be fi...
متن کاملCategories of fuzzy topology in the context of graded ditopologies on textures
This paper extends the notion of ditopology to the case where openness and closedness are given in terms of {em a priori} unrelated Drading functions. The resulting notion of graded ditopology is considered both in the setting of lattices and in that textures, the relation between the two approaches being discussed in detail. Interrelations between graded ditopologies and ditopologies on textur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Logic & Analysis
دوره 5 شماره
صفحات -
تاریخ انتشار 2013